[Update] Pseudorandom Number Generator Based on Three Kinds of FourWing Memristive Hyperchaotic System and Its Application in Image Encryption  fourwing – Sambeauty
fourwing: คุณกำลังดูกระทู้
Nội dung bài viết
Abstract
In this paper, we propose a method to design the pseudorandom number generator (PRNG) using three kinds of fourwing memristive hyperchaotic systems (FWMHSs) with different dimensions as multientropy sources. The principle of this method is to obtain pseudorandom numbers with good randomness by coupling XOR operation on the three kinds of FWMHSs with different dimensions. In order to prove its potential application in secure communication, the security of PRNG based on this scheme is analyzed from the perspective of cryptography. In addition, PRNG has passed the NIST 800.22 and ENT test, which shows that PRNG has good statistical characteristics. Finally, an image encryption algorithm based on PRNG is adopted. In the encryption algorithm, the optimized Arnold matrix scrambling method and the diffusion processing based on XOR are used to obtain the final encrypted image. Through the evaluation of encryption performance, it is concluded that there is no direct relationship between the pristine image and encrypted image. The results show that the proposed image encryption scheme has good statistical output characteristics and security performance in line with cryptography.
1. Introduction
With the continuous development of information technology, from the security of state secrets to the security of personal privacy, the issue of information security is increasingly concerned by the society and researchers [1–9]. Random numbers (RNs) are closely related to cryptography, which has attracted much attention due to its extreme sensitivity to keys, mixed data, pseudorandom behavior, and determinism. Therefore, the research of random number generator (RNG) with cryptographic security has become a hot spot [10–12]. These generators, which can produce true random numbers (TRNs) or pseudorandom numbers (PRNs), are called true random number generators (TRNGs) [11] and pseudorandom number generators (PRNGs) [10, 12], respectively. The TRNG based on physical phenomena (e.g., thermal noise and oscillator) has the disadvantage of the slow generation of TRN. In order to meet the needs of practical calculation, PRNG has been widely used due to its advantages of fast generation, repeatability, and less memory.
The existing PRNGs include linear congruence generators, carryaddborrow subtractive generators, inverse congruence generators, and PRNGs based on chaotic systems. Due to some advantages of chaotic systems, such as sensitivity to initial conditions, ergodicity, pseudorandom behavior, and high complexity, chaotic systems are widely used in electronic circuits [13–17], synchronization [18–21], secure communication [22–24], complex networks [25–29], and PRNGs [10–12, 30–32]. In [10], in order to make the possible key of the encryption scheme more difficult to crack, the author proposes a multiparameter mapping to determine the region of chaotic behavior and introduces additional disturbance into the chaotic map. Compared with traditional mapping, the randomness and superiority of the proposed scheme are proved. In [12], a PRNG based on piecewise logistic mapping (PLM) is proposed, and PLM is an enhanced version of logistic mapping. However, the PRNG based on this system needs 18 arithmetic operations to obtain 8bit numbers, which is complex in calculation and inefficient in speed. Because the behavior characteristics of hyperchaotic systems are more complex than those of chaotic systems, which leads to better chaotic characteristics, higher sensitivity to initial conditions and control parameters, larger key space, stronger antidecoding ability of algorithms, and more complex dynamic characteristics [33–36]. This indicates that their dynamic sequences are more divergent than chaotic systems, and all these advantages are very useful for generating pseudorandom sequences with better statistical properties. Therefore, the PRNGs construction method based on the hyperchaotic system has attracted more and more scholars’ attention and research. In [37], a selfperturbed PRNG based on the hyperchaotic system is proposed. A novel hyperchaotic system is constructed, in which the linear feedback controller is used as a disturbance factor to make the controllers interact with each other, thus achieving more complex dynamic behavior and avoiding the appearance of a short period sequence.
Memristor is a physically realized dynamic nonvolatile nanoscale device. As a controllable nonlinear device, it makes the generation of chaotic signals easier. Due to the addition of a memristor, the interaction between each variable in the memristive chaotic system or hyperchaotic system is intensified, resulting in the chaos, or hyperchaotic range is enlarged, and the dynamic characteristics become more complex [38–45]. On this basis, some RNGs based on memristive chaotic system or hyperchaotic system have been proposed successively [42, 46, 47]. Yu et al. [42] proposed a multistable 5D memristive hyperchaotic system. The multistable system is reflected in its different types of coexistence attractors, chaos, hyperchaos, period, and limit cycle. The authors designed an RNG suitable for actual image encryption application based on the complex characteristics of the multistable memristive hyperchaotic system. The resulting sequence passed the National Institute of Standards and Technology (NIST) test package and security analysis. Hashim et al. [46, 47] proposed a fivestage random number generator based on memristor. Each stage includes a memristor and an NMOS transistor. Their results show that the random number generator based on memristor is more random than the inverterbased random number generator because the memristor can produce highly random output in the circuit design.
Due to the good autocorrelation characteristics and larger key space, the design of RNG using multiple chaotic systems as entropy sources has attracted extensive attention of scholars recently [48–53]. In [48], a PRNG using a 4D memristor memristive hyperchaotic and Bernoulli map as double entropy source is proposed and implemented by FPGA. The pseudorandom sequence generated based on the double entropy source system has a good effect, which has passed the tests of statistical test suites such as NIST 800.22, ENT, and AIS.31. The key space, key sensitivity, and information entropy are analyzed to meet the security requirements of cryptography. In [49], a new PRNG is proposed based on two Tinkerbell maps. Despite the success of the statistical tests, the Tinkerbell mapping is a 2D system, and if the PRNG algorithm uses two mappings, there will be 26 arithmetic operations in each iteration, which will be slower to implement in hardware digital systems. In [50], a PRNG is designed by mixing three chaotic maps generated by an input initial vector together as an entropy source. In [51], a random bitstream is generated by comparing piecewise linear chaotic maps consisting of crosscoupled two Tent maps. In [51, 52], a PRNG based on two chaotic logistic maps and two standard chaotic maps is proposed, respectively. The abovementioned PRNGs based on multientropy source chaotic system meet the requirements of cryptographic communication through NIST 800.22 test package, statistical analysis, and relevant security analysis.
Images are processed differently from text because of their larger data capacity and the serious correlation between adjacent pixels. Image encryption algorithm involves a variety of alternative or transposition methods to convert ordinary images into encrypted images. For image, video, and other multimedia data with a large amount of data and strong correlation between adjacent data, the chaotic key has a stronger advantage in realtime encryption, so the research of the chaotic image encryption method is attracting more and more attention [54–60]. PRNG can generate sufficiently long pseudorandom digital key streams that are critical to the encryption of image pixels. For example, Ismail et al. [61] proposed a lossless image encryption algorithm based on edge detection and generalized chaotic mapping. A variety of pseudorandom number key generators based on generalized chaotic maps, including fractional order, delay, and bimodal logistic maps, are designed. Tsafack et al. [62] implemented an image encryption protocol based on chaos using the Sbox structure and PRNG generation mechanism. In order to verify the performance of the protocols, the standard security analysis methods are adopted in [61, 62] and compared with other methods. The results show that the chaotic pseudorandom sequence has a broad application prospect in image encryption.
This paper presents a method to generate PRNGs using three kinds of fourwing memristive hyperchaotic systems (FWMHSs) with different dimensions. We conducted a comprehensive security analysis from the perspective of cryptography to verify the effectiveness of the proposed PRNG algorithm in cryptography applications, and the PRNG passed the NIST 800.22 test suite and ENT test. On this basis, a PRNG image encryption algorithm based on the multientropy source FWMHSs is proposed, and related security analysis is carried out. The rest of the paper is organized as follows. Section 2 enumerates the mathematical models of three kinds of FWMHSs and briefly introduces their dynamic characteristics. In Section 3, these three kinds of FWMHSs are used to obtain the real number sequence by XOR operation, and then the binary quantization process is designed. Finally, the quantized binary sequence successfully passed the statistical test of NIST 800.22 and ENT test. Section 4 analyzes the proposed PRNG algorithm and its performance. In Section 5, PRNG is used to study the image encryption algorithm, and some security analysis is carried out on the image encryption. Finally, the conclusion is drawn in Section 6.
2. Three Kinds of FWMHSs
In recent years, many researchers have suggested using the complex chaotic system as an entropy source to design RNG, which can be used to improve the complexity and security level of the system because the complex chaotic system may have good randomness and complex chaos characteristics, so that the cipher system can obtain higher security [48–53]. In this paper, three kinds of FWMHSs with different dimensions are used as composite systems to construct the PRNG. The following three kinds of FWMHSs are, respectively, introduced.
2.1. 4D FWMHS
Recently, a 4D FWMHS is proposed in [38]. In this system, the periodic piecewise function is used to replace the control parameters of the Chen system, and a fluxcontrolled memristor with linear memductance is introduced. The nonlinear equation of the system is given by the following equation:where are state variables and are system parameters. is the fluxcontrolled memristor with linear memductance and . When and the initial conditions are , the Lyapunov exponents are calculated as LE1 = 1.976, LE2 = 0.l, LE3 = 0 and LE4 = −11.950, respectively. System (1) contains two positive Lyapunov exponents, and the bifurcation diagram of the corresponding parameter range is shown in Figures 1(c) and 1(d), indicating that it is a hyperchaotic system, and its fourwing phase portrait is shown in Figures 1(a) and 1(b).
(a)
(b)
(c)
(d)
(e)
(f)
2.2. 5D FWMHS
A 5D FWMHS is proposed in [24] which has rich dynamic characteristics, and there exists a new critical point, called the permanent point. The coexistence of symmetric and multiwing attractors under different initial values of system parameters is discussed. Therefore, under certain initial conditions, chaotic or hyperchaotic attractors, periodic attractors, and quasiperiodic attractors also exist; for more dynamic characteristics, please refer to [24]. The mathematical model of the 5D memristor hyperchaotic system iswhere are state variables and are system parameters. is the fluxcontrolled memristor and . When the system parameters are , and , and the initial values of system (2) are given as , the Lyapunov exponents of system (2) are calculated as follows: LE1 = 3.5610, LE2 = 0.3092, LE3 = 0, LE4 = −2.0660, and LE5 = −23.4708. It can be seen that system (2) has two positive Lyapunov exponents, which means that the 5D FWMHS (2) can exhibit hyperchaotic dynamics. The bifurcation diagram of the fourwing hyperchaotic attractor, the Lyapunov exponent spectrum, and the bifurcation diagram of the corresponding parameters of system (2) are shown in Figure 2.
(a)
(b)
(c)
(d)
(e)
(f)
2.3. 6D FWMHS
More and more attention has been paid to high dimensional systems. The generated signals are usually used for secure communication and random number generation due to their complexity. High dimensional systems originated from neuroscience, laser, and other realworld systems with many interaction characteristics [63]. In [40], a 6D FWMHS with line equilibria based on a fluxcontrolled memristor model is proposed. Under different system parameters and initial values, the system exhibits rich dynamic behaviors, including quasiperiodic bifurcation and onewing, twowing, and fourwing chaotic attractors. The dynamics of the 6D FWMHS is described by the following set of equations:where are state variables and are system parameters. is the fluxcontrolled memristor and . When system parameters are select as , and , the initial conditions are , , which indicates system (3) has two positive Lyapunov exponents and the 6D FWMHS is in hyperchaos. Figure 3 shows the phase portrait of the fourwing hyperchaotic attractor, Lyapunov exponent spectrum, and the bifurcation diagram of corresponding parameters of system (3).
(a)
(b)
(c)
(d)
(e)
(f)
3. PRNG Based on Three Kinds of FWMHSs
3.1. The Structure of PRNG Algorithm
The PRNG design method of the chaotic system with a single entropy source is too simple, easy to be intercepted reversely, and the complexity is low. The chaotic characteristics of multientropy source memristive hyperchaotic systems are dependent on the hyperchaotic systems (1)–(3) described above. Therefore, it is more complex than every single hyperchaotic system. The RNs generated by PRNG is designed with these three kinds of FWMHSs as multientropy source to achieve a better random effect and meet security requirements.
The binary quantization process of the chaotic real number sequence is an important step in the design of generating the pseudorandom sequence. It will directly affect the randomness and complexity of the sequence and ultimately affect the security of its application system. In order to make the pseudorandom generator have a good output rate and good robustness, the binary quantization of three kinds of fwmhs is carried out, and the real number sequence is output. For three kinds of continuous memristive hyperchaotic systems, the RK4 algorithm is used to discretize the system, and a 32‐bit floatingpoint number is generated for every iteration. Then, the output sequence of chaos in each dimension is calculated by exclusive or operation, and the hetero scheme is as follows:.
Then, the XOR operation is performed to enhance the randomness, and the output sample is taken as the final bit sequence. The specific flow chart is shown in Figure 4, where are the output sequences of 4D, 5D, and 6D continuous memristive hyperchaotic systems.
Initialization:
While (key condition) do choose the last 22 binary decimal values from the sequences of 4D, 5D, and 6D continuous memristive hyperchaotic that called Xi_OUT, Yi_OUT, and Zi_OUT,
Obtain bit stream based on XOR of until = end while
3.2. Randomness Tests
A large number of randomness testing algorithms and related standards have been published to evaluate the generated pseudorandom sequences, which can provide a lot of reference data for theoretical analysis. ENT (pseudorandom number sequence test program) test program can easily give four statistics to measure randomness, Shannon entropy of each byte in a pseudorandom sequence, value calculated by the Monte Carlo method, arithmetic mean root of sequence, and firstorder selfcorrelation number of sequence. The 800.22 test grouping provided by NIST suggests 16 statistical test methods for randomness testing arbitrary long binary sequences. Some of these 16 test items contain multiple subtest items, and the results of each test item have two indicators, namely, and pass rate. For value, when 0.01, we consider the sequence to be random. The usual value is , where we deem the set significance level . For the value of the pass rate, if the value is within the confidence interval, it means that the sequence passes the test and is set as the group number of the sequencing column; then, the confidence interval is
In this experiment, the pseudorandom sequences generated by our proposed method generate 130 different binary sequences of 1M bits length. That is, , and the calculated confidence interval is . As can be seen from Table 2, the of each item is greater than the significance level, and the pass rate proportion value is within the confidence interval, so the generated sequence can completely pass the NIST test, and Table 3 shows that the test results of ENT reach the ideal value. That is, the sequence is random.
Statistical testProportion
ResultsFrequency0.96670.074177SuccessBlock Frequency0.99170.585209SuccessCumulative Sums0.97500.051391SuccessRuns0.99170.980883SuccessLongest Run0.96670.378138SuccessRank0.99170.213309SuccessFft0.97500.931952SuccessNonoverlapping Template10.772760SuccessOverlapping Template0.98330.970538SuccessUniversal0.98330.337162SuccessApproximate Entropy0.99170.222869SuccessRandom Excursions10.437274SuccessRandom Excursions Variant10.706149SuccessSerial0.99170.324180SuccessLinear Complexity0.99170.048716SuccessTest nameTest outputIdeal valueResultsEntropy7.999998SuccessArithmetic Mean0.50000.5SuccessMonte Carlo Value for Pi3.1424443.141592SuccessSerial Correlation Coefficient−0.0000330Success
4. Security Analysis
4.1. Complexity Analysis
The complexity of multientropy source memristor hyperchaotic system is mainly reflected by approximate entropy (). is a kind of used to quantify the time sequence regularity of volatility and unpredictability of nonlinear dynamics parameters, it, with a negative number to represent the complexity of a time series, reflects the time series of the possibility of new information, its physical meaning is when the dimension change, the size of the time series of the new model of probability, produce the greater the probability of new pattern, the more complex time series, the greater the corresponding approximate entropy [64]. Later, the approximate entropy is extended to measure the randomness of binary sequences [65]. In this chapter, we discuss the effect of the length of the pseudorandom sequence on the approximate entropy value. The more uniform the general probability distribution is, the more complex the sequence will be, and the greater the approximate entropy will be. The process of definition is as follows:
1(1)When there is an ndimensional time series obtained by sampling at equal time intervals.(2)Reconstruct mdimension vector , where .(3)For , count the number of vectors that meet the following conditions: where is defined as , is the element of vector , is the distance between vectors and , which is determined by the maximum difference value of the corresponding element, and the value range of is , including .(4) is defined as where is an integer representing the length of the comparison vector; is a real number, representing the measure of “similarity,” usually , where represents the standard deviation of the original time series.Table 4 lists the values corresponding to different sequence lengths. It can be seen that with the increase of chaotic sequence length, the complexity of chaotic sequence increases, and the value of chaotic sequence also has risen, showing the superiority of random sequence.
Sequence length (bits)
13200.693066000.6931220000.7707
4.2. Key Space and Running Speed Analysis
Generally speaking, it is not secure when the key space is less than . With the respect to an ideal cryptosystem, it should be lagre enough to make brute force attack infeasible. In a multientropy source based on FWMHSs, when we fix another parameter or initial value and change a parameter or initial value, the changed parameter or initial value is called a secret key. The key is sensitive to any differences equal to or larger than . Therefore, the key space is larger than . So that roughly the key space of the multientropy source based on FWMHSs can be calculated as follows: , which is enough to resist all kinds of violent attacks. One of the advantages of chaotic cryptography is higher running speed. In addition, when it comes to the proposed PRNGs meeting today’s safety standards, the proposed method has a fairly satisfactory running speed. The experimental hardware environment is 1.8 GHz Intel Celeron CPU and 8 GB memory computer; the software environment is windows 7 and MATLAB 2014 compiler, and the proposed PRNG can achieve a running speed of 0.3256 Mbits/s.
4.3. Key Sensitivity Analysis
In the key sensitivity analysis, we use the bit change rate to measure its sensitivity to the key, that is, to observe the degree of the number of bits in the sequence generated by the PRNG when the key is slightly changed. By counting the change of the value of “0” and “1” in the corresponding position of the binary sequence, the corresponding bit change rate is calculated:where and are binary sequences generated before and after minor changes in the initial key of the system. Take the key of 4D FWMHS as an example, when to () and to () change, respectively, the key sensitivity analysis of PRNG proposed in this paper is shown in Table 5. The ideal bit change rate is 50%. The closer the bit change rate obtained through simulation is to 50%, the more sensitive the PRNG is to the initial value.
Initial key
49.91149.796
4.4. Correlation Analysis
Correlation analysis refers to the analysis of two or more elements with correlation variables to measure the degree of correlation between two sequences. Autocorrelation function refers to the correlation between a sequence and its corresponding shifted sequence . The autocorrelation function of a pseudorandom sequence with good performance is similar to that of a function . When used to measure the correlation of two given sequences at different times, the autocorrelation function of a pseudorandom sequence with good performance tends to 0. The correlation coefficient between sequence generated by the original key and sequence generated after the key is slightly changed can be expressed aswhere and represent mean and standard deviation, respectively. If , the difference between the two sequences is obvious and there is almost no correlation. Take the key of 4D FWMHS as an example, the trajectories of each sequence and the corresponding sequence generated after the minor change of the key are shown in Figure 5. The red trajectory represents the sequence generated after the minor change of the original key, and the blue trajectory represents the sequence after the minor change of the original key. The system trajectory produced a separation after about five iterations, indicating that it was very sensitive to small changes in the key. Moreover, from the uniform results of autocorrelation and crosscorrelation in Figure 6 and the correlation coefficient in Table 6 approaching 0, it is verified that there is almost no correlation between the pseudorandom sequences generated by this method, and it can be seen that the PRNG proposed by our method is ideal and conforms to security. The academic degree of the proposed PRNG has a high sensitivity to the key.
(a)
(b)
(a)
(b)
Initial keyCorrelation coefficient
—0.00410.0018−0.0022
4.5. Spectral Entropy Complexity Analysis
Based on the Fourier transform, the algorithm is used to calculate the relative power spectrum and spectral entropy complexity of the sequence in combination with the Shannon entropy [66–68]. Its function is to analyze the complexity and security of the chaotic system. The more complex the spectrum of a general sequence, the greater the spectral entropy [69–71]. Figure 7 shows the spectral entropy complexity of the three kinds of FWMHSs when some parameters change with each other. It can be seen from these figures that spectral entropy is in these highcomplexity regions when and (as shown in Figure 7(a)), and (as shown in Figure 7(b)), and and (as shown in Figure 7(c)). It shows that these three systems have high complexity in a large range; that is, chaos or hyperchaos exist in these ranges.
(a)
(b)
(c)
As people are more and more interested in the study of chaotic systems, some PRNGs based on chaos have been implemented. Since the PRNG is the main core of cryptography encryption algorithm, in order to evaluate the advantages of the proposed scheme, we focus on the security and give the comparison results with other latest schemes in Table 7, including the number of types of entropy sources, randomness test packages, and security analysis.
Refs.[10][12][37][40][49][50]ProposedTypePRNGPRNGPRNGPRNGPRNGPRNGPRNGEntropy sourceAdaptive chaotic mapsMultimodal map4D hyperchaotic system5D memristive hyperchaotic systemTwo Tinkerbel mapsThree chaotic mapsThree kinds of FWMHSsPast processing✓XOR✓XOR✓XORXORTest suitNISTNISTNISTNISTNIST, ENT DIEHARDNISTNIST, ENTKey space
—
Key sensitivity—?49.74% (bit change rate)50.0028% (bit change rate)?✓49.911% (bit change rate)Correlation<0.02<0.05−0.000470.000198−0.000330—0.0018Entropy——7.9896————Speed (Mbit/s)0.3—0.5017—0.4901—0.3256Comparison analysis✓——✓——✓Entropy complexity——————✓
5. Image Encryption Application
Digital image has been regarded as the main carrier of information communication because of its intuitive and vivid features. Digital image files mainly store the color and grayscale information of the image, but the image information in the process of image transmission may involve a large number of private information, so ensuring the security of the image in the process of transmission and storage has become the focus of attention and research [72–77]. At present, the combination of the chaotic system and image encryption becomes a hot topic in cryptography. In this section, based on the pseudorandom sequence generated by the three kinds of FWMHSs, the position or pixel value of image pixels is scrambled and replaced. Finally, the validity analysis of encrypted images, key space, histogram analysis, key sensitivity, antidifferential aggression, and correlation between adjacent pixel points are carried out.
5.1. Bit Plane Layering
In an image, a pixel is a number of bits. The grayscale of each pixel is made up of eight bits (bytes). Then, an 8bit image can be considered to be composed of 8 1bit planes [78], as shown in Figure 8. Figures 9(b)–9(i) refer to the eight 1bit planes of the 8bit image, from top to bottom, from the highest order bit to the lowest order bit. The acquisition of each bit layer is the binary image obtained under the processing of the threshold gray transformation function (denoted as ). Generally speaking, all grayscale mappings greater than are 1, and all grayscale mappings less than are 0. However, for the convenience of image encryption, we set all grayscale mappings less than to 0.5.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
The decomposition of an image into a bit plane can help us determine the adequacy of the number of bits used to quantify the image. Reconstruction is made by multiplying the pixels of the th plane by the constant . The plane used to reconstruct an image can be less than all the bitplanes decomposed. As can be seen from Figure 9, the higher the bit image, the more information the original image contains. The threebit layers constitute the image in Figure 10(c), which generally restores the original image. Although the main features of the original image have been restored, they are somewhat flat and lack details, especially in the background area. Adding bitplane 5 to reconstruction effectively improves this situation, as shown in Figure 10(b). After many trials, adding more planes will not contribute much to the appearance of the image. Similarly, compared with the time consumed by the proposed encryption scheme, it takes 0.1568 s to encrypt an 8bit Lena image and 0.1576 s to encrypt a 4bit Lena image. The time consumed by encrypting two different bit planes can be regarded as equal. Thus, storing four higherorder bitplanes can restore the details in the accepted range to reconstruct the original image, and using four bit planes to reconstruct the original image can reduce the storage by 50%.
(a)
(b)
(c)
5.2. Proposed Image Encryption Algorithm
In this section, we will encrypt the image based on the proposed pseudorandom number sequence, and the image scrambling and diffusion can be realized in the spectrum domain. The process of the proposed image encryption algorithm is as follows: Step 1: The 4bit plane obtained by bit layered decomposition and reconstruction is used as the original 2D plaintext image , as shown in Figures 11(a) and 11(d). Step 2: Random scrambling. PRNG based on multientropy source FWMHSs is used to generate pseudorandom number vector with length , each random number , and then random onedimensional vector and with size are generated from . The image matrix is then transformed into a onedimensional vector with the size of . Arnold transformation is performed on any coordinate position of vector to obtain the coordinate of the row, namely, So and . Here, take as a new random number through optimization, which is still recorded as ; then . Finally, the scrambled image is obtained, as shown in Figures 11(b) and 11(e). Step 3: The image and the pseudorandom sequence generated by PRNG of length are diffused for XOR; that is, the final encrypted image is , as shown in Figures 11(c) and 11(f). The decryption algorithm is the inverse process of the encryption algorithm. The specific encryption and decryption flow chart is shown in Figure 12.
(a)
(b)
(c)
(d)
(e)
(f)
5.3. Security Analysis
5.3.1. Key Space and Execution Efficiency
The encryption scheme proposed in this paper uses the initial value of state variables of multientropy source memristor hyperchaotic system as the original key, and the key space can reach , which is equivalent to 760bit key length. If the system parameters are also used as the original key, the key space is larger. Therefore, this algorithm has the ability to resist the exhaustive attack. The main way to improve efficiency is to use integer operation and implement the subgraph parallel encryption strategy.
5.3.2. Histogram and Correlation Analysis
Due to the spectrum characteristics of the digital image, the algorithm must have similar security and performance for any image encryption. The ideal histogram distribution of the ciphertext image should be uniform to prevent attackers from obtaining some information from the fluctuating histogram. We use the proposed algorithm to encrypt the original twodimensional plaintext image P to obtain an encrypted image similar to noise, as shown in Figure 11(c). When we use fourbit layer image analysis and image encryption, some pixels in each pixel of the original plaintext reconstructed image P are missing, and the histogram display is shown in Figures 13(a) and 13(c)). However, we will inevitably lose some unimportant values (mainly the image micro detail data, which does not affect the image vision). Through the histogram of ciphertext in Figures 13(b) and 13(d), we can see that the value of ciphertext pixel is very small, which is due to the loss of some micro detail data pixel value; in this case, the histogram cannot reflect the uniformity. We will verify the uniformity of the encrypted image by the following security analysis.
(a)
(b)
(c)
(d)
The correlation between adjacent pixels indicates the quality of image encryption. Of course, the correlation between adjacent pixels of the plaintext image will be very high. Through a good encryption algorithm, the correlation between these pixels can be eliminated, which avoids the attacker from the perspective of correlation to obtain image information. We randomly select 1000 pairs of pixel values on the horizontal, vertical, and diagonal adjacent pixels of plaintext image and encrypted image . Then, we calculate the correlation coefficient in Table 8 through the correlation coefficient equation (8). Among the correlation coefficients of the two images, the two correlation coefficients of the encrypted image generated by the proposed algorithm are the smallest among all the comparable algorithms, and [79, 80] have a minimum correlation coefficient, respectively. In addition, the correlation coefficients of the encrypted image in three directions are close to 0, which means that the correlation between adjacent pixels in the plane image is effectively eliminated, and the image obtained is completely unrecognizable. In this paper, histogram and correlation tests are used to prove the resistance to statistical attacks.
ImageDirectionPlain imageEncrypted imageRef. [57]Ref. [79]Ref. [80]Ref. [81]LenaHorizontal0.77724−0.0045−0.0031−0.0084−0.01240.0519Vertical0.848580.0004−0.0293−0.0017−0.0038−0.0385Diagonal0.7369−0.0194−0.0077−0.0194−0.00900.0046BaboonHorizontal0.52256−0.1480.0224———Vertical0.510420.00600.0115———Diagonal0.419890.0069−0.0025———
5.3.3. Differential Key Attack Analysis
Differential cryptanalysis is one of the most effective methods to attack iterative block cipher. It is to recover some key bits by analyzing the influence of plaintext pair difference on ciphertext pair difference. The number of pixels change rate (NPCR) and the unified average changing intensity (UACI) are two widely used metrics to evaluate the strength of the image encryption algorithm (or cipher) under differential attack. Assuming that the encrypted image after the pixel change of the original plaintext image is and , respectively; then, the pixel values at in and are expressed as and , and their bipolar array is expressed as equation (10). Then, NPCR and UACI can be defined by equations (11) and (12). For the reconstruction of the fourbit layer image, the results of NPCR and UACI are ideal and the results are shown in Table 9:
ImageLenaBaboonNPCR (%)83.456483.2596UACI (%)34.682834.7289
5.3.4. Entropy Analysis
Information entropy is a measure of system complexity and reflects the randomness of system information. If the system information is more complex and there are more types of different situations, then its information entropy is relatively large [82], and its value can be calculated by equation (13). For an 8bit gray level image, the closer it is to 8 bits, the less likely the algorithm is to leak information:
In Table 10, we can see that the entropy of the plaintext image is relatively low, and the entropy of the encrypted image is close to 8. In the information entropy of the two images, compared with [57, 83–85], the entropy of the encrypted image generated by our proposed algorithm is close to 8 bits.
ImageLenaBaboonProposed7.99727.9971Ref. [57]7.99937.9993Ref. [83]7.99727.9025Ref. [84]7.8683—Ref. [85]7.90307.9026
6. Conclusion
In this paper, a new PRNG method is proposed by coupling three kinds of FWMHSs with different dimensions. The security of the generated chaotic pseudorandom sequence is analyzed. The results show that the random number generated by the proposed method has good statistical characteristics, including large enough key space and excellent key sensitivity, and the generated random number sequence can pass NIST and ENT randomness detection. As a typical application of PRNG, an image encryption algorithm based on PRNG using three kinds of FWMHSs different dimensions as a multientropy source is proposed. The results of encryption and decryption, security analysis, and antidifferential attack ensure the effectiveness of the algorithm, and the pixel correlation of encrypted image tends to zero. Finally, the performance comparison with the existing encryption algorithms shows that the proposed image encryption algorithm based on the proposed PRNG can be effectively applied in cryptography.
Data Availability
All data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grants 61504013, 61702052, 61901169, and 61674054; the Natural Science Foundation of Hunan Province under Grants 2019JJ50648, 2020JJ4622, 2019JJ40190, and 2020JJ4221; the Guangxi Key Laboratory of Cryptography and Information Security under Grant GCIS201919; the Postgraduate Training Innovation Base Construction Project of Hunan Province under Grant 202017248; the Postgraduate Scientic Research Innovation Project of Hunan Province under Grant CX20200884; the Scientific Research Fund of Hunan Provincial Education Department under Grant 18A137; and the Young Teacher Development Program Project of Changsha University of Science and Technology under Grant 2019QJCZ013.
[Update] Saltbush  fourwing – Sambeauty
Oldman saltbush, and probably most other relatives, have their greatest potential where there is a welldefined autumn feed gap and the property has a significant amount of scalded land that does not grow good pasture any more.
It is very expensive to establish but is very hardy once a few years old. Its role is as a drought reserve or a special purpose crop, not a production system.
Oldman saltbush grows well only on heavy clays and alkaline clayloams. Saltbushes are not suited to the tropics or coastal and cool upland areas.
On this page:
Saltbushes are members of a worldwide family of plants (Chenopodiaceae – chenopods) that are common in deserts and salty environments. They vary in size from small fleshy herbs to large woody shrubs. In many rangelands they constitute the dominant shrubby vegetation and are also the staple diet of many animals.
Saltbush (Atriplex species) and bluebush (Maireana spp.) are closely related subgroups and there are about 60 species of each in Australia. There are another 30 to 40 related chenopod species that have similar forage value and appearance. Some are annuals but many are strongly perennial.
One of the bestregarded saltbushes in the world is Australia´s oldman saltbush (Atriplex nummularia). This tall shrub was very common in the MurrayDarling Basin in the 19th century but has now disappeared from many areas.
Currently the wool industry in the rangelands of western New South Wales (NSW), South Australia and Western Australia depends on saltbushes and bluebushes for its survival. Many of the saltbushes are palatable, nutritious and tolerant of drought, frost and saline soil. Hence people are often tempted to try to sow and grow them commercially. In practice, this is not easily done and only a few species lend themselves to classic agronomic practices. Only oldman saltbush has been commercialised to date in eastern Australia but many others have been tried. Two species native to Western Australia, river saltbush (A. amnicola) and wavyleaf saltbush (A. undulata), have been widely tested but they have not done well in southern Queensland.
In the United States the native fourwing saltbush (A. canescens) has been grown commercially, and Mediterranean saltbush (A. halimus) is used a little in the Middle East. Many species would make good low maintenance, slowgrowing ornamentals for arid zone gardens and parks.
Shrubby saltbushes are generally rich in protein, minerals and salt but are not highly palatable. They are relatively slow growing, quite woody and do not refoliate rapidly after grazing, except under good autumn and spring conditions. Hence they must be well established (over 18 months old generally) before they can be grazed. Thereafter they can only be grazed intermittently, once or twice a year for short periods.
Some have high levels of oxalates in the leaves and this can be toxic to hungry stock if eaten in excess. Fortunately, oldman saltbush is not recorded as being poisonous but there is also no evidence of it contributing to weight gain in stock – it just holds them in their current condition.
The most common shrubby saltbushes are strongly perennial and will live for decades. Though tolerant of saline subsoils some are quite sensitive to other soil characteristics. It is believed that oldman saltbush is intolerant of free aluminium ions and so will not persist in very acidic conditions, such as on mulga soils.
Oldman saltbush is well adapted to heavy alkaline clay soils and in western NSW sown stands of it also persist well on texture contrast soils, especially on slightly higher levees of river frontages.
Mediterranean saltbush is suited to sandy loams but dies on Australian clay soils. Likewise, river saltbush from Western Australia does not persist on heavy alkaline clays. Fourwing saltbush is tolerant of a fairly wide range of soils and mine spoils. A number of species will grow and persist on saline mine spoils in the absence of grazing.
Experience over the last 25 years shows that shrubby saltbushes are well adapted to dry arid atmospheres. Under such conditions they have no significant pests or diseases. Stem borers sometimes damage plants and redlegged earthmite is suspected of causing problems to some saltbushes in southern Australia. Higher rainfall environments, especially where summers are wet or winters are persistently damp, do not suit these plants.
All the perennial species are difficult to establish from seed and therefore are usually sown as transplants. This overcomes the need to leach salts from the seed coverings before sowing and the slow, weak seedling growth rate.
Unfortunately, the cost of establishing a stand then becomes very high because of the need to water the seedlings initially and to control weeds. Costs range up to $800 per hectare for 2500 to 3000 bushes. On top of this, most have separate male and female plants and must crosspollinate. Therefore isolated plants can never spread or thicken up without an oppositesexed plant nearby.
Sowing saltbush should only be considered in Queensland and northern NSW under the following two situations:

where soil salinity or structure precludes most other plants from surviving

where a very specific feed gap occurs every year that saltbush leaf protein can fill.
In the first instance, the land has little potential for growing grass or saltsensitive trees and the cost of establishing saltbush is justified by the long term, although low level, production achieved. Only on claypans in arid inland Australia and on very saline land elsewhere are these conditions likely to be found. Saline soil or water will significantly slow even saltbush growth and seedlings will not establish quickly in soils with very saline surface conditions.
The second situation is more likely to be a feasible commercial proposition and it depends on the consistent shortfall of quality feed such as is experienced in semiarid southern Australia in late summer.
However, there could also be a role at other times where grazing a reserved saltbush area allows spelling of another part of the property. Each saltbush paddock responds best if grazed fairly intensively for only a short time. If grazed for too long, animals damage regrowing twigs or start to trample bushes in their search for protected, less accessible leaf.
Commercial companies that sell saltbush offer plenty of good advice about sowing and grazing shrubby saltbush such as de Koch saltbush. This is actually a line of oldman saltbush that was selected in South Africa from material that was originally native to Australia. Comparisons show that it is virtually indistinguishable from remnants of oldman saltbush growing in southern Queensland.
Fortunately, red and grey kangaroos do not particularly like saltbushes so they won´t damage new sowings. The situation with wallabies, hares and rabbits is not clear but there is no knowledge of problems with rabbits or hares. Transplants are normally planted about 1 metre apart in rows spaced 23 metres wide. Interrow space is determined by rainfall zone and by the width of tillage implements used to control weeds.
Sowing is best done in cooler weather for several reasons, including:

reduced demand for irrigation water

plants are less stressed

grasshoppers and insects are less active.
Seedlings grow slowly in midwinter but wellrooted ones grow well in the next spring and early summer. On clay soils, de Koch variety needs no fertiliser but weeds must be controlled in the first year. In later years, grasses should be encouraged to grow in the interrows to provide a balance in the diet available to the livestock and to protect the surface soil. The saltbushes are very competitive and grasses do not grow well beneath their canopy.
A wellgrown oldman saltbush plant grows over two metres tall and eventually, if ungrazed, will sprawl 45 metres wide. However, under annual grazing most bushes are only 12 metres across and 1.5 metres tall. Large stands have been successfully established at Hannaford, St George, Cunnamulla and Narromine.
Typical grazing systems run about 125 adult sheep (50 sheep/acre) or 15 steers/ha. At this rate 46 weeks grazing is possible and then the paddock must be rested for at least 8 months. Without favourable seasonal conditions during this spell, grazing must be delayed until the bushes have fully refoliated. Thickening up or spread by seedlings is virtually impossible under this grazing system.
Oldman saltbush subjected to open grazing was exterminated from large areas of Australia in the late 19th century. Nonetheless, its low palatability means new stock usually take a few days before seriously grazing saltbush, although droughthungry stock usually take to it with some relish.
Nutritionally, saltbush has quite high protein and moderate digestibility, akin to rangeland legumes and better than mature green grass. However it is high in salt and stock need to be on good quality water to allow a high intake level.
Despite the reasonable chemical quality of saltbush it does not produce significant weight gain on its own. Feeding grain with saltbush can produce some weight gain. Actual weight gains and wool growth depend on the saltbush species and the circumstances of the animals, such as age, condition and stocking rate.
However, oldman saltbush is usually more nutritious than other species grown commercially in Australia. Carcasses of animals from saltbush are reported to have surprisingly low fat cover for the quality of the meat and the conformation of the animal.
Further information
 Glenn E, Tanner R, Miyamoto S, Fitzsimmons K & Boyer J 1998, Water use, productivity and forage quality of the halophyte Atriplex nummularia grown on saline waste water in a desert environment. Journal of Arid Environments 38: 4562.
 Cunningham GM, Mulham WE, Milthorpe PL & Leigh JH 1981, Plants of Western New South Wales. NSW Soil Conservation Service, Sydney.
 Malcolm CV & Allen RJ 1981, The Mallen niche seeder for plant establishment on difficult sites. Australian Rangeland Journal 3: 106109.
 Norman H & Filmer M 2008, Make the most of saltbush forage. Farming Ahead No. 193., viewed February 2011, www.csiro.au/files/files/piqt.pdf.
 Saltland Genie 2009, Establishment & management of dense saltbush plantings, viewed February 2011, http://www.saltlandgenie.org.au/solutions/ss3saltbush/establishmentandmanagementofdensesaltbushplantings.htm.
 Warren B, Casson T & BarrettLennard E 1995. Value of saltbush questioned. J. Agric. W.A. 36: 2427.
Cm\u0026Mm : Site tour 211122 – Renovation condo Fourwing
Cm\u0026Mm : Site tour 211122 Renovation condo Fourwing
Project : Penthouse fourwing residence condo
Designer : Cen\u0026Mil Interior Architects Studio
Location : Four Wings Residence Condominium, ศรีนครินทร์
Scope : Renovate Design
architecturedesign interiordesign cmandmmstudio cenandmilstudio architecture interior Housedesign interiorarchitect Architect design รับออกแบบ interiorแปดริ้ว รับออกแบบฉะเชิงเทรา รับออกแบบภายใน designbycenandmilstudio penthouse 4wings FourWingsResidenceCondominium
นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูความรู้เพิ่มเติมที่นี่
Pang + Pu Reception @Grand Fourwing
Photography : Friday Studio
Venue : Grand Fourwing
Decoration : HUG Wedding Planner
Organizer : Buildup Organizer
Make Up : Surasak Studio
Pangpuwedding
23 March, 2019
Let FRIDAY makes your fine day.
www.facebook.com/fridaystudioofficial
www.fridaywedding.com
Line : fridayfoto
Tel : 0819961964
Fourwing
Grotto @The Grand Fourwing
Idea my home เทป 7 the grand fourwing 1
นอกจากการดูบทความนี้แล้ว คุณยังสามารถดูข้อมูลที่เป็นประโยชน์อื่นๆ อีกมากมายที่เราให้ไว้ที่นี่: ดูบทความเพิ่มเติมในหมวดหมู่Wedding
ขอบคุณที่รับชมกระทู้ครับ fourwing